

KS 90-1 / 92-1 Industrie- und Prozessregler

BluePort® Frontschnittstelle und BlueControl Software
Wartungsmanager und Errorliste
Zwei Universaleingänge
Day & Night Display mit Bargraph und Klartext
Zwei umschaltbare Parametersätze
Puls-Tuning am Sollwert ohne Schwingung
Motorschrittregler mit Rückmeldung und

Dreipunktregler für Wasser-, Luft- und Ölkühlen Typgeprüft nach EN 14597 (DIN 3440) und cULus zugelassen

Hochohmiger mV-Eingang für O₂-Sensoren

- Universalausführung stetig/ schaltend, d.h. reduzierte Lagerhaltung
- 100 ms Zykluszeit, d.h. auch für schnelle Strecken geeignet
- 20 ms als kürzester Stellimpuls
- 2 frei konfigurierbare Analogausgänge, z.B. als Istwertausgang
- Sondermessbereich mit kundenspezifischer Linearisierung für alle Eingangsarten
- Verriegelung über Passwort und internen Schalter für hohe Sicherheit
- Erweiterter Temperaturbereich bis 60°C ermöglicht die Montage nahe dem Prozess
- Messwertkorrektur als Offset oder2-Punkt
- Heizstromüberwachung und Messkreisalarm
- Notbetrieb bei Fühlerbruch durch Übernahme des gemittelten Stellgrades
- Logische Verknüpfung der digitalen Ausgänge, z.B. für Sammelalarme
- Programmregler Variante erhältlich (KS 9x-1 programmer)
- * RS422/485 Modbus RTU Schnittstelle
- Eingebaute Transmitterspeisung
- Strahlwasserdichte Front -(Schutzart IP 65)
- ◆ Schnittstelle
- Kundenspezifischer Default -Datensatz

ANWENDUNGEN

- Öfen
- Brenner und Kessel
- Kunststoffverarbeitung
- ➤ Trockner
- Wärmebehandlung
- > Thermalöl-Anlagen

BESCHREIBUNG

Die Industrie- und Prozessregler der KS 9x-1 Familie sind geeignet für präzise und preiswerte Regelungsaufgaben in allen Bereichen der Industrie. Dabei kann zwischen einfacher Ein/Aus-Regelung, PID-Regelung und Motorschrittregelung gewählt werden. Das Istwert-Signal wird über einen Universaleingang angeschlossen. Ein zweiter Analogeingang kann zur Heizstrommessung, als externer Sollwerteingang oder als Positionsrückmeldung von Motorschrittreglern dienen. Der optionale dritte Eingang kann als Universaleingang für eine Vielzahl von Funktionen, wie z.B. einer temperaturabhängigen Sollwertkorrektur, Differenzregelung usw., eingesetzt werden.

O2-Messung und -regelung

Die KS 90-1 und KS 92-1 sind standardmäßig zur Sauerstoffregelung mit beheizten und unbeheizten O_2 -Sonden einsetzbar. Der Anzeigebereich ist 0,001 ppm...100% O_2 . Die Einheit (ppm / %) wird im vierstelligen Display automatisch angezeigt.

Aus der hochohmig (>200M Ω) erfaßten Sondenspannung (INP1) und der Sondentemperatur (INP3) wird die O_2 -Kondentemperatur (INP3) wir

zentration nach der Nernst'schen Gleichung berechnet, angezeigt und bei Bedarf geregelt. Bei beheizten Sonden wird die Referenztemperatur als Konstante eingegeben.

DAC[©]-Überwachung

Zur Beruhigung der O_2 -Anzeige kann ein Filter <999,9s eingestellt werden. Die Kalibrierung unterstützt die Eingabe der Korrekturwerte (Offset oder Zweipunkt) in ppm bzw. $\%O_2$.

Ausgänge

Jeder der KS 9x-1 Familie verfügt über 4 Prozessausgänge: entweder Relais, oder bis zu zwei Universalausgängen, die zur Ansteuerung von Solid State Relais, als stetige Ausgänge mit Strom oder Spannung oder als Messumformerspeisung konfiguriert werden können. Optional gibt es zwei frei verwendbare Optokopplerausgänge.

Steckbar

Diese Regler sind als steckbare Geräteeinschübe konzipiert. Dadurch können Geräte sehr schnell, werkzeuglos, und ohne Beeinträchtigung der Verdrahtung getauscht werden.

Selbstoptimierung beim Anfahren und am Sollwert

Das neu entwickelte Verfahren ermittelt beim Aufstart der Anlage schnell und sicher die optimalen Regelparameter für ein schnelles und überschwingfreies Ausregeln. Bei Heizen/Kühlenreglern werden alle Parameter für Kühlen separat ermittelt um auch dort eine optimale Anpassung zu erreichen.

Auf Knopfdruck ermitteln die Regler die optimalen Regelparameter am Sollwert, ohne Schwingung und mit minimaler Abweichung der Regelgröße.

Kundenspezifischer Default-Datensatz

Ein kundenspezifischer Default-Datensatz kann z. B. bei der Inbetriebnahme erzeugt und gespeichert werden. Später kann der Bediener Einstellungen durch Rücksetzen auf diesen Datensatz überschreiben.

Anzeige und Bedienung

Das Day & Night Display zeichnet sich durch besondere Kontraststärke sowohl in dunkler als auch heller Umgebung aus. Die Statusfelder zeigen zuverlässig Betriebszustände, Betriebsart und Fehlermeldungen an.

Die Klartextanzeige kann verschiedene Prozesswerte numerisch oder als Bargraph darstellen.

Frontschnittstelle und Engineering Tools

Die Reglereinstellung in Sekunden ist nun auch in der KS 9x-1 Klasse Wirklichkeit geworden. Über die BlueControl Software, inklusiv der Regler- und Streckensimulation und vor allem den komfortablen Anschluss über die Blue-Port® Frontschnittstelle kann man ohne langes Studieren der Bedienungsanleitung die gewünschte Aufgabenstellung lösen.

Natürlich können auch fast alle Einstellungen komfortabel über die Gerätefront durchgeführt werden (siehe auch Seite 7, BlueControl.

Passwortschutz

Bei Bedarf können die unterschiedlichen Bedienebenen auch mit einem Passwort gegen unberechtigte Zugriffe geschützt werden, oder es können komplette Ebenen gesperrt werden.

TECHNISCHE DATEN

EINGÄNGE

ÜBERSICHT DER EINGÄNGE

Eingang	Verwendung
INP1	Wie INP2 (Default Istwert X1)
INP2	Heizstrom, externer Sollwert oder externe Verschiebung, Stellungs- rückmeldung Yp, Istwert x1, zwei- ter Istwert x2, fester Stellwert Y.E, Eingang für zusätzliche Grenzwert- überwachung und Anzeige
INP3 (Option)	wie INP2 und zusätzlich Sondentemperatur bei O ₂ -Messung
di1	Bedienung verriegelt, Blockierung
di2	Handtaste, Rücksetzen gespeicher- ter Alarme, Umschaltung auf
di3 (Option)	zweiten Sollwert SP.2, externen Sollwert SP.E, externe Stellgröße Y.E, feste Stellgröße Y2, Handbe- trieb, Regler aus, Parametersatz 2, zweiten Istwert X2

ISTWERTEINGANG INP1

Auflösung: > 14 Bit

Dezimalpunkt: 0 bis 3 Nachkommastellen

Grenzfreguenz: 2 Hz

Dig. Eingangsfilter: einstellbar 0,0...999,9 s

Abtastzyklus: 100 ms

Messwertkorrektur: 2-Punkt- oder Offsetkorrektur

Spezial

(Sonderlinearisierung): 15 Segmente

Standardtabelle: Temperaturfühler KTY 11-6

Thermoelemente (Tabelle 1)

Interne und externe Temperaturkompensation

Eingangswiderstand: $\geq 1 \ \mathrm{M}\Omega$ Einfluß des Quellenwiderstands: $1 \ \mu \mathrm{V}/\Omega$

Temperaturkompensation intern

Maximaler Zusatzfehler ± 0,5 K

Bruchüberwachung

Strom durch den Fühler: $\leq 1 \,\mu\text{A}$ Wirkungsweise konfigurierbar (\rightarrow Seite 4)

Sonderthermoelement

Der Messbereich -25...75mV kann zusammen mit der Linearisierung zum Anschluss von Thermoelementen eingesetzt werden, die in der Tabelle 1 nicht enthalten sind!

Widerstandsgeber

Anschlusstechnik: 3-Leiter
Leitungswiderstand: max. 30 0hm
Messkreisüberwachung: Bruch und Kurzschluss

Strom und Spannungsmessbereiche

Messanfang, Messende: beliebig innerhalb des

Messbereichs

Skalierung: beliebig -1999...9999

Spezial-Linearisierung: 15 Segmente, anpassbar mit der BlueControl

Software

Dezimalpunkt: einstellbar

Messkreisüberwachung: 12,5% unter Mess-

anfang (2mA, 1V)

ZUSATZEINGANG INP2

Auflösung: > 14 Bit Abtastzyklus: 100 ms

Tabelle 1 Thermoelementmessbereiche

Thermoelementtyp		Messbereich		Genauigkeit	Auflösung (∅)
L	Fe-CuNi (DIN)	-100900°C	-1481652°F	≤ 2 K	0,1 K
J	Fe-CuNi	-1001200°C	-1482192°F	≤ 2 K	0,1 K
K	NiCr-Ni	-1001350°C	-1482462°F	≤ 2 K	0,2 K
N	Nicrosil/Nisil	-1001300°C	-1482372°F	≤ 2 K	0,2 K
S	PtRh-Pt 10%	01760°C	323200°F	≤ 2 K	0,2 K
R	PtRh-Pt 13%	01760°C	323200°F	≤ 2 K	0,2 K
T	Cu-CuNi	-200400°C	-328752°F	≤ 2 K	0,05 K
С	W5%Re-W26%Re	02315°C	324199°F	≤ 2 K	0,4 K
D	W3%Re-W25%Re	02315°C	324199°F	≤ 2 K	0,4 K
E	NiCr-CuNi	-1001000°C	-1481832°F	≤ 2 K	0,1 K
B ⁽¹⁾	PtRh-Pt6%	0(400)1820°C	32(752)3308°F	≤ 3 K	0,3 K
Sonderthermoelement		-25	75 mV	≤ 0,1 %	0,01 %

⁽¹⁾ Angaben gelten ab 400°C

Tabelle 2 Widerstandsgeber

Art	Messstrom	Messbereich		Genauigkeit	Auflösung (∅)
Pt100		-200850°C	-3281562°F	≤ 1 K	0,1 K
Pt1000		-200850°C	-3281562°F	≤ 2 K	0,1 K
Spezial*		045	00 Ω	≤ 0,2 %	0,01 %
	0.2 4	045	i0 Ω **		
Spezial Poti	0,2 mA	016	0 Ω **		
Poti		045	i0 Ω **	≤ 0,1 %	0,01 %
Poti		01600 Ω **			
Poti		04500 Ω **			

^{*} Voreingestellt ist die Kennlinie KTY 11-6 (-50...150°C)

Tabelle 3 Strom und Spannungsmessbereiche

	-1 3		
Messbereich	Eingangswiderstand	Genauigkeit	Auflösung (Ø)
0-10 Volt	≈ 110 kΩ	≤ 0,1 %	0,6 mV
-2,5115 mV	≥ 200 MΩ	≤ 0,1 %	6 <i>μ</i> V
-251150 mV	≥ 200 MΩ	≤ 0,1 %	60 μV
0-20 mA	20 Ω	≤ 0,1 %	1,5 <i>µ</i> A

^{**} inklusiv Leitungswiderstand

Heizstrommessung

über Heizstromwandler

Messbereich: 0...50mA AC

Skalierung: beliebig -1999...0,000...9999 A

Strommessbereich

Eingangswiderstand ca. 120 Ω Messanfang, Messende: beliebig innerhalb

0 bis 20mA

Skalierung: beliebig -1999...9999 Mekssreisüberwachung: 12,5% unter Messan-

fang (4..20mA → 2mA)

Potentiometer

Messbereiche siehe Tabelle 2
Anschlusstechnik: 2-Leiter
Leitungswiderstand: max. 30 Ohm
Messkreisüberwachung: Bruch

ZUSATZEINGANG INP3 (OPTION)

Auflösung: > 14 Bit Abtastzyklus: 100 ms

Technische Daten wie INP1 außer Messbereich 10V.

STEUEREINGANG DI1. DI2

Konfigurierbar als direkte oder inverse Schalter oder **Taster**! Anschluss eines potentialfreien Kontaktes der zum Schalten "trockener" Stromkreise geeignet ist.

Geschaltete Spannung: 5 V Strom: $100 \mu\text{A}$

STEUEREINGÄNGE DI2, DI3 (OPTION)

Die Funktionen des Steuereingangs di2 auf der A-Karte und von di2 auf der Optionskarte sind logisch oder-verknüpft. Konfigurierbar als direkte oder inverse Schalter oder **Taster**!

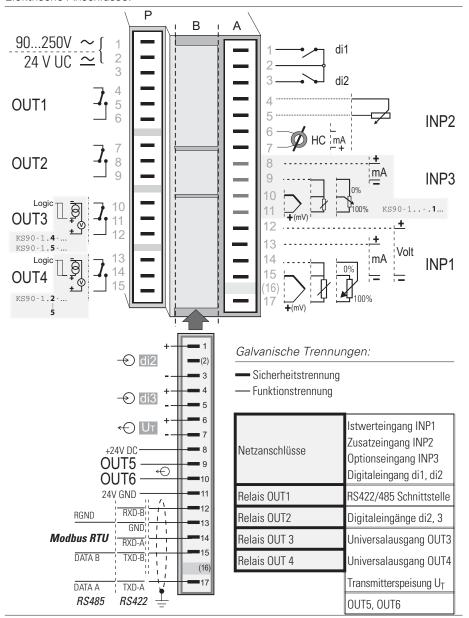
Aktiv anzusteuernder Optokopplereingang

Nennspannung 24 V DC extern

 Stromsenke (IEC 1131 Typ 1)

 Logik "0"
 -3...5 V

 Logik "1"
 15...30 V


 Strombedarf
 ca. 5 mA

TRANSMITTERSPEISUNG U_T (OPTION)

Leistung: $22 \text{ mA} / \ge 18 \text{ V}$

Die analogen Ausgänge OUT3 bzw. OUT4 und die Transmitterspeisung U_T liegen auf unterschiedlichen Spannungspotentialen. Daher darf, bei analogen Ausgängen, keine externe galvanische Verbindung zwischen OUT3/4 und U_T hergestellt werden.

Elektrische Anschlüsse:

Einbaumaße:

AUSGÄNGE

ÜBERSICHT DER AUSGÄNGE

	.,
Ausgang	Verwendung
OUT1 und OUT2 (Relais)	Regelausgang Heizen oder Kühlen bzw. Auf/Zu, Grenz- kontakte, Alarme *
OUT3, 4 (Relais oder Logik)	wie OUT1 und OUT2
OUT3, 4 (stetig)	Regelausgang, Istwert, Mess- werte INP1/2/3, Soll- wert, Regelabweichung, Stellungsrückmeldung Yp, Transmitterspeisung 13V/22mA
OUT5, OUT6 (Optokoppler)	wie OUT1 und OUT2

^{*} Alle logischen Signale können oder-verknüpft werden!

RELAISAUSGÄNGE OUT1..OUT4

Kontaktart: Potentialfreier Wechsler Schaltleistung 500 VA, 250 V, 2A bei 48...62 Hz, maximal: ohmsche Last

Schaltleistung 6V. 1 mA DC

minimal:

Schaltspiele für I = 1A/2A: ≥ 800.000 /500.000 (bei ~ 250V / elektrisch:

(ohmsche Last))

Hinweis:

Bei Anschluss eines Steuerschützes ist eine RC-Schutzbeschaltung nach Angaben des Schützherstellers am Schütz erforderlich, um hohe Spannungsspitzen zu vermeiden.

OUT3.4 ALS UNIVERSAL-AUSGANG

Galvanisch getrennt von den Eingängen.

Frei skalierbar

Auflösuna: 11 bit Zeitkonstante des DA-Wandlers T₉₀: 50 ms Grenzfrequenz des gesamten stetigen Reglers: > 2 Hz

Stromausgang

0/4...20 mA konfigurierbar.

0...ca.22mA Aussteuerbereich: $< 500 \Omega$ Riirde: Einfluß der Bürde: kein Einfluß Auflösung: \leq 22 μ A (0,1%) Genauigkeit $\leq 40 \,\mu\text{A} (0.2\%)$

Spannungsausgang

0/2...10V konfigurierbar

Aussteuerbereich: 0...11 V Bürde: $\geq 2 k\Omega$ Einfluß der Bürde: kein Einfluß Auflösung: $\leq 11 \text{ mV } (0,1\%)$ Genauigkeit \leq 20 mV (0,2%)

OUT3, 4 als Transmitterspeisung

22 mA /≥ 13 V Leistuna:

OUT3, 4 als Logiksignal

Bürde ≤ 500 Ω $0/\leq 20 \text{ mA}$ Bürde $> 500 \Omega$ 0/> 13 V

AUSGÄNGE OUT5, OUT6 (OPTION)

Galvanisch getrennte Optokopplerausgänge.

Grounded load: gemeinsame positive Steuerspannung

Schaltleistung: 18...32 VDC; ≤ 70 mA Interner Spannungsabfall: ≤ 1V bei I_{max} Schutzbeschaltung: eingebaut gegen Kurzschluss, Verpolung.

Hinweis: Bei induktiver Last ist extern eine Freilaufdiode anzubringen.

FUNKTIONEN

Regelverhalten

- Signalgerät mit asymmetrischen Schaltdifferenzen (EIN/AUS-Regler)
- PID-Realer (2-Punkt und stetia)
- Dreieck / Stern / Aus bzw. 2-Punktregler mit Teil-/Voll- lastumschaltung
- 2 x PID (Heizen/Kühlen)
- Motorschritt mit oder ohne Stellungsrückmeldung
- Stetiger Regler mit integrierten Stellungsregler (Motorschritt)

Zwei umschaltbare Parametersätze. Regelparameter selbsteinstellend oder manuell über Fronttasten bzw. BlueControl Software.

Verhalten von 2- und 3-Punktreglern

Standard:

Automatische und kontinuierliche Anpassung der Periodendauer an den Stellgrenzen um eine präzise Dosierung der Leistung im Grenzbereich zu erzielen.

- Mit konstanter Periode: Der kürzeste Einstellimpuls ist >20ms einstellbar
- Wasserkühlen linear (Heizen=standard): Die Kühlung erfolgt erst ab einer einstellbaren Temperatur, da bei niedrigeren Temperaturen keine ausreichende Kühlwirkung erfolgen kann. Die Impulslänge ist > 20ms einstellbar und für alle Stellwerte fest.
- Wasserkühlen unlinear (Heizen=standard): Wie oben aber hier wird besonders berücksichtigt, dass die Stärke des Kühleneingriffs in der Regel sehr viel stärker ist, als die des Heizeneingriffs und dies beim Übergang von Heizen nach Kühlen zu ungünstigen Verhalten führen kann.

Sollwertfunktionen

- Einstellbarer Sollwertgradient 0,01...9999 °C/min
- Festwertrealer
- Festwert/Folgeregler
- Festwert/Folgeregler mit externer Verschiebung

Istwertfunktionen

- Standart (xeff = INP1)
- Verhältnisregler (INP1/X2)
- Differenzregler (INP1-X2)
- Max (INP1, X2)*
- Min (INP1, X2)*
- Mittelwert (INP1, X2)*
- Umschaltung zwischen INP1 und X2
- O₂-Funktionen mit konstanter Sondentemperatur
- O₂-Funktionen mit gemessener Sondentemperatur
- anwendbar wenn redundante Sensoren notwendig sind. Beim Ausfall eines Sensors wird mit dem verbleibenden weitergeregelt.

Verhalten bei Sensorbruch/Kurzschluss:

- Reglerausgänge abschalten
- Ausgeben eines Sicherheitsstellwer-
- Ausgeben des gemittelten Stellwer-
- Bei den Istwertfunktionen min, max und Mittelwert wird mit dem verbleibenden Istwert weitergeregelt.

SPEZIELLE FUNKTIONEN

DAC® garantiert Betriebssicherheit

Digital Actuator Control überwacht die Funktion des Stellantriebs und erkennt Probleme, bevor sich diese über eine erhöhte Regelabweichung auswirken. Erkannt wird Blockage, defekter Motor oder Kondensator und sonstige Probleme am Antrieb, die dessen Funktion beeinflussen.

Die DAC-Funktion steht bei 3-Punkt-Schrittreglern mit Potentiometerrückmeldung über INP3 zur Verfügung.

Modbus Master

Der KS 9x-1 kann als Modbus Master konfiguriert werden. Dann sendet er an alle angeschlossenen Slave Regler, zyklisch durch den Anwender spezifizierte Signale oder Parameter. Damit sind beispielsweise folgende Anwendungen möglich:

- Sollwertverschiebung relativ zum jeweiligen im Slave eingestellten Sollwert (→ Bild)
- Abgleich der Regelparameter, Grenzwerte, usw.
- Begrenzung der Stellgröße (Override-Control)

GRENZWERTFUNKTIONEN

MAX, MIN oder MAX+MIN Überwachung mit einstellbarer Hysterese

Überwachbare Signale:

- Istwert
- Regelabweichung
- Regelabweichung mit Unterdrückung beim Anfahren oder Sollwertänderung
- wirksamer Sollwert
- Stellgröße Y
- Messwerte INP1, INP2, INP3
- Differenz INP1 X2. Damit können z.B. gealterte Thermoelemente erkannt werden.

Funktionen

- Messwertüberwachung
- Messwertüberwachung mit Speicherung. Rücksetzen über Front oder Digitaleingang
- Überwachung von Änderungen
- Alarmzeittor einstellbar von 0 bis 9999 Sekunden

Mehrere Grenzwert- und Alarmmeldungen können logisch oder-verknüpft ausgegeben werden. Anwendungen: Lösen einer Bremse bei Motorschrittreglern, Sammelalarm, usw.

ALARME

Heizstromalarm

- Überlast und Kurzschluss
- Unterbrechung und Kurzschluss Grenzwert einstellbar von 0...9999 A

Regelkreisunterbrechung

Automatische Erkennung, wenn auf eine Stellgröße keine Reaktion des Istwertes erfolgt.

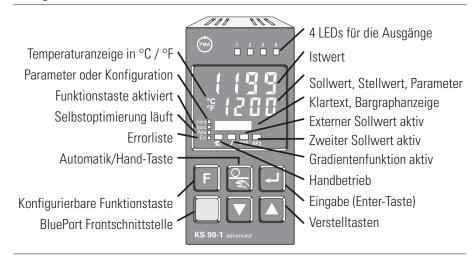
Fühlerbruch / Kurzschluss

Je nach eingestellter Eingangsart, wird das Eingangssignal auf Bruch und Kurzschluss überwacht.

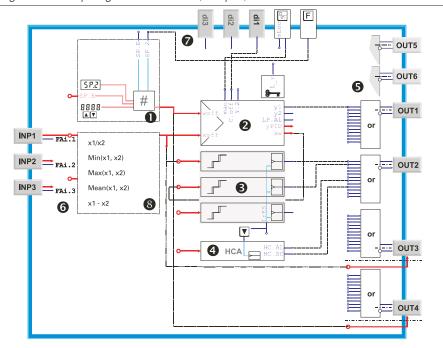
WARTUNGSMANAGER


Anzeige von Fehlermeldungen, Warnungen und gespeicherten Grenzwertmeldungen in der Errorliste.

Meldungen werden gespeichert und können manuell zurückgesetzt werden.


Mögliche Elemente der Errorliste:

- Fühlerbruch, -kurzschluss,
 Polaritätsfehler
- Heizstromalarm
- Regelkreisalarm
- DAC-Alarm (Stellantrieb defekt)
- Fehler der Selbstoptimierung
- Gespeicherte Grenzwerte


Modbus Master Funktion erleichtert die Sollwertverstellung z.B. bei Extrudern

Anzeige und Bedienelemente:

Mögliche Verknüpfung der Funktionen (Beispiel):

- Sollwertverarbeitung
- Regelfunktion inklusiv Regelkreisüberwachung (Loop Alarm)
- Grenzwertüberachung, wahlweise mit Speicher (latch) und Unterdrückung
- 4 Heizstromüberwachung
- Ausgangsverarbeitung inklusiv Oder-Verknüpfung und Invertierung
- 6 Analogeingänge mit Meldung von Sensorfehler
- Digitaleingänge, Funktionstaste und
 -Taste mit Verriegelung
- 8 Istwertverarbeitung

- Nachkalibrationswarnung
- Wartungsintervall Schaltglied
- Interne Fehler (RAM, EEPROM, ...)

Blinkendes Error-Symbol zeigt aktiven Alarm in der Errorliste:

BEDIENUNG UND ANZEIGE

4 x 7-Segment 10,5 mm

8-stellige Punktmatrix zum

numerisch oder als Bargraph

4 x 7-Segment 7,8 mm

Anzeige von Signalen

4 x 7-Segment 15,2 mm

4 x 7-Segment 10,2 mm

Anzeige von Signalen numerisch oder als Bargraph

8-stellige Punktmatrix zum

Integriertes Day&Night Display

Anzeige KS90-1

Untere Anzeige:

Anzeige KS92-1

grundbeleuchtung

Untere Anzeige:

Klartextzeile:

Klartextzeile:

Istwert:

Istwert:

Mehrere Funktionen können kombiniert werden (z.B. SP.2 und Parametersatz 2 mit einer Taste).

HILFSENERGIE

Je nach Bestellung:

WECHSELSPANNUNG

Spannung: 90...260 V AC Frequenz: 48...62 Hz Leistungsaufnahme ca. 10 VA

ALLSTROM 24 V UC

Wechselspannung:20,4...26,4 V ACFrequenz:48...62 HzGleichspannung:18...31 V DC class 2Leistungsaufnahme:ca: 10 VA (W)

VERHALTEN BEI NETZAUSFALL

Konfiguration, Parameter und eingestellte Sollwerte, Betriebsart: Dauerhafte EEPROM-Speicherung

BluePort® FRONTSCHNITTSTELLE

Anschluss an der Gerätefront über PC-Adapter (siehe "Zusatzgeräte"). Über die BlueControl Software können die Regler der KS 9x-1 Familie konfiguriert, parametriert und bedient werden.

BUSSCHNITTSTELLE (OPTION)

RS 422/485-SCHNITTSTELLE

Galvanisch getrennt

Physikalisch: RS 422/485
Protokoll: Modbus RTU

Geschwindigkeit:

2400, 4800, 9600, 19.200 Bit/sec Adressbereich: 1...247 Anzahl der Regler pro Bus: 32

Darüberhinaus sind Repeater einzusetzen.

Bedienfunktionen

Die Funktionen der \(\)- Taste und der \(\)F-Taste sind konfigurierbar:

LCD Anzeigemodul mit roter Hinter-

	_	
Funktion	0	F
Remote (Bedienung gesperrt)		Χ
SP.2 (Sollwert 2)		Χ
SP.E (externer Sollwert)	Х	Χ
Y.2 (fester Stellwert)	Х	Χ
Y.E (ext. Stellwert)	Х	Χ
Manual (Handbetrieb)	Х	Χ
C.OFF (Regelfunktion aus)	Х	Χ
Verriegelung der Handtaste		Χ
Reset (zurücksetzen gespeicherter Limits und Fehlermeldungen)	Х	Х
Parametersatz 1 ↔ 2		Χ
Istwert INP1 ↔ X2		Χ

PROFIBUS-DP SCHNITTSTELLE

> siehe Datenblatt 9499-737-44833

UMGEBUNGSBEDINGUNGEN

Schutzart

Gerätefront: IP 65 Gehäuse: IP 20 Anschlüsse: IP 00

Zulässige Temperaturen

Betrieb: 0...60°C
Anlaufzeit: < 15 Minuten
Temperatureinfluss: < 100ppm/K

Grenzbetrieb: -20...65°C Lagerung: -40...70°C

Feuchte

75% im Jahresmittel, keine Betauung

Erschütterung und Stoß

DIN EN 60068-2-6

Frequenz: 10...150 Hz im Betrieb: 1g bzw. 0,075 mm außer Betrieb: 2g bzw. 0,15 mm

DIN EN 60068-2-27

Schock: 15g Dauer: 11ms

Elektromagnetische Verträglichkeit

Erfüllt die EN 61 326-1

- Erfüllt die Störfestigkeitsanforderungen für kontinuierlichen, nicht-überwachten Betrieb
- Erfüllt die Störaussendungsanforderungen der Klasse B für Wohnbereiche
- Bei Surge-Störungen ist mit erhöhten Messfehlern und Fehlermeldungen zu rechnen

ALLGEMEINES

Gehäuse

Werkstoff: Makrolon 9415 schwer

entflammbar Brennbarkeitsklasse: UL 94 VO, selbstverlöschend

Einschub, von vorne steckbar

Sicherheit

Entspricht EN 61010-1 (VDE 0411-1): Überspannungskategorie II Verschmutzungsgrad 2 Arbeitsspannungsbereich 300 V Schutzklasse II

Zulassungen

Typgeprüft nach DIN EN 14597 (ersetzt DIN 3440)

Mit den entsprechenden Fühlern einsetzbar in:

- Wärmeerzeugungsanlagen mit Vorlauftemperaturen bis 120°C nach DIN 4751
- Heißwasseranlagen mit Vorlauftemperaturen von mehr als 110°C nach DIN 4752
- Wärmeübertragungsanlagen mit organischen Wärmeträgern nach
 DIN 4754
- Olfeuerungsanlagen nach **DIN 4755**

cULus-Zulassung

(Type 1, indoor use) File: E 208286

Elektrische Anschlüsse

je nach Bestellung:

- Flachsteckmesser 1 x 6,3 mm oder 2 x 2,8 mm nach DIN 46 244
- Schraubklemmen für Leiterquerschnitt von 0,5 bis 2,5 mm²

Montage

Tafeleinbau mit je zwei Befestigungselementen oben und unten oder rechts und links Dicht an Dicht-Montage möglich

Gebrauchslage: beliebig Gewicht KS 90-1: 0,27 kg

Mitgeliefertes Zubehör

Bedienungsanleitung Befestigungselemente

ZUSATZGERÄTE

BlueControl (Engineering Tool)

PC-Programm zur Konfiguration, Parametrierung und Bedienung (Inbetriebnahme) der KS 9x-1 Familie. Außerdem können alle Einstellungen archiviert und bei Bedarf ausgedruckt werden. Je nach Ausführung steht ein leistungstarkes Datenerfassungsmodul mit Trendgrafik zur Verfügung.

Sichtbarkeitsmasken

Mit der BlueControl Software können beliebig viele Parameter und Konfigurationsparameter im Gerät ausgeblendet werden. Damit wird sichergestellt, dass Vorort nur zugelassene Parameter verändert werden können. Sicherheitsrelevante Parameter bleiben unsichtbar!

Zwei Parameter wurden ausgeblendet:

Kürzel	Bezeichnung	Sichtbar
Setp	Sollwert	✓
SP.LO	untere Sollwertgrenze	
SP.Hi	obere Sollwertgrenze	
SP.2	Zweiter Sollwert	V
r.SP	Sollwertgradient [/min]	V
t.SP	Timer-Haltezeit [min]	V

Simulation

Die eingebaute Simulation dient zum Test der Reglereinstellungen, aber auch allgemein zum Kennenlernen der Wechselwirkungen zwischen Reglern und Regelkreisen.

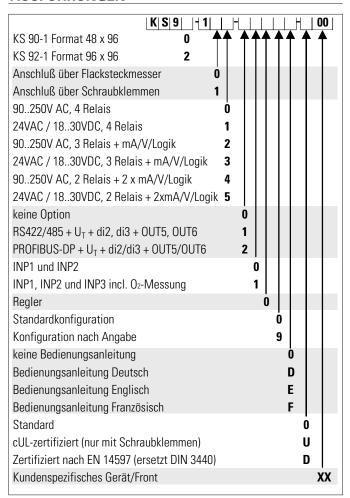
Softwarevoraussetzung

Windows 95/98/NT/2000.

BlueControl, Versionen und Funktionen:

Funktionalität	Mini	Basic	Expert
Einstellung der Parameter und Konfigurationsparameter	ja	ja	ja
Regler und Regelstreckensimulation	ja	ja	ja
Download: Übertragen eines Engineerings zum Regler	ja	ja	ja
Online-Modus / Visualisierung	nur SIM	ja	ja
Erstellen einer anwenderspezifischen Linerarisierung	ja	ja	ja
Konfiguration der erweiterten Bedienebene	ja	ja	ja
Upload: Lesen eines Engineerings vom Regler	nur SIM	ja	ja
Basisdiagnosefunktion	nein	nein	ja
Datei, Engineering speichern	nein	ja	ja
Druckenfunktion	nein	ja	ja
Onlinedokumentation / Hilfe	ja	ja	ja
Durchführen der Meßwertkorrektur	ja	ja	ja
Datenerfassung und Trendaufzeichnung	nur SIM	ja	ja
Assistentenfunktion	ja	ja	ja
erweiterte Simulation	nein	nein	ja
Programmeditor (nur KS 90-1prog und KS 92-1prog)	nein	nein	ja

Konfigurationen die ausschließlich über die BlueControl Software vorgenommen werden können (nicht über die Fronttasten):


- Kundenspezifische Linearisierung
- Kundenspeziefischen default-Datensatz aktivieren
- Forcing für Ein- und Ausgänge freischalten
- Betriebstunden- und Schaltspielzahl-Grenzwert einstellen
- Umschalten auf 60 Hz Netzfrequenz
- Master/Slave Konfiguration
- Blockierung von Bedieneingriffen, Ebenen und Passwortvergabe
- Verhinderung der automatischen Optimierung der Zykluszeit T₁, T₂

Hardwarevoraussetzung:

Zum Anschluss an den Regler ist ein PC-Adapter (→Zusatzteile) erforderlich.

Updates und Demosoftware auf: www.pma-online.de

AUSFÜHRUNGEN

ZUSATZGERÄTE

Beschreibung		Bestell-Nr.
Heizstromwandler 50A	9404-407-50001	
PC-Adapter (seriell) für die BluePort® Fron	tschnittstelle	9407-998-00001
USB-Adapter für PC-Ad	dapter	9407-998-00081
Normschienenadapter des KS90-1 auf Hutsch		9407-998-00061
Bedienungsanleitung	Deutsch	9499-040-62918
KS 9x-1	Englisch	9499-040-62911
	Französisch	9499-040-62932
Bedienungsanleitung	Deutsch	9499-040-66118
KS9x-1dp	Englisch	9499-040-66111
BlueControl Mini	Deutsch/ Englisch/ Französisch	www.pma-online.de
BlueControl Basic	Deutsch/ Englisch/ Französisch	9407-999-11001
BlueControl Expert	Deutsch/ Englisch/ Französisch	9407-999-11011
Datenblatt KS 9x-1	Deutsch	9498-737-40633
	Englisch	9498-737-40613
Datenblatt KS 9x-1dp	Deutsch	9498-737-44833
	Englisch	9498-737-44813
Engineering Set	Deutsch	9407-999-10511
KS 9x-1 PROFIBUS	Englisch	9407-999-10501
Anschlussadapter Sub-	9407-998-07001	
Anschlussadapter Sub-	9407-998-07011	

Deutschland

Prozeß- und Maschinen- Automation GmbH P.O. Box 31 02 29 D-34058 Kassel

Tel.: +49 - 561- 505 1307 Fax: +49 - 561- 505 1710 E-mail: mailbox@pma-online.de Internet: http://www.pma-online.de

Österreich

PMA Prozeß- und Maschinen-Automation GmbH Zweigniederlassung Österreich Triester Str. 64, A-1100 Wien

Tel.: +43 / 1 / 60 101-1865 Fax: +43 / 1 / 60 101-1911 E-mail: pma-wien@nextra.at Internet: http://www.pma-online.de